
German Collegiate Programming
Contest 2020
November 21st

Problems
A Adolescent Architecture
B Bookshelf Building
C Confined Catching
D Decorative Dominoes
E Exhausting Errands
F Flip Flow
G Gravity Grid
H Hectic Harbour
I Impressive Integers
J Jeopardised Journey
K Knightly Knowledge
L Lexicographical Lecturing
M Mixtape Management

This page is intentionally left (almost) blank.

Problem A: Adolescent Architecture

Building blocks by Thaliesin on Pixabay

Little Peter is building a stack out of his toy blocks. He is using
two kinds of blocks – cubes and cylinders – and wants to stack
all of them into a single tower, where each block other than the
topmost block has a single block standing on it. In order for the
tower to be stable, the outline of each block needs to be fully
contained within the outline of the block below when looking at
the tower from above (the outlines are allowed to touch). Is it
possible to construct such a tower, and if so, in which order do
the blocks need to be stacked?

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 100), the number of blocks.
• n lines, each with the description of a block. The description consists of a string giving

the type of block (cube or cylinder) and an integer a (1 ≤ a ≤ 1 000) giving the size
of the block – if the block is a cube then a is its side length, and if it is a cylinder then a is
the radius of its base (note that the height of the cylinder does not matter).

Output

If there is no way to construct the tower, output impossible. Otherwise output n lines, giving
the order in which to stack the blocks from top to bottom.

Sample Input 1 Sample Output 1

3
cube 7
cube 11
cylinder 5

cube 7
cylinder 5
cube 11

Sample Input 2 Sample Output 2

2
cube 5
cylinder 3

impossible

Sample Input 3 Sample Output 3

3
cube 4
cylinder 2
cube 4

cylinder 2
cube 4
cube 4

GCPC 2020 – Problem A: Adolescent Architecture 1

https://pixabay.com/photos/building-blocks-stones-colorful-1563961/
https://pixabay.com/users/Thaliesin-2168464/

This page is intentionally left (almost) blank.

Problem B: Bookshelf Building

Bookshelf by Free-Photos on Pixabay

Anna just came home from her favourite furniture store
Ikey Yeah! where she bought a new bookshelf designed
by her favourite artist Bill Lee. The shelf has a rectangu-
lar shape with a width of x and a height of y. Included
in the box of the shelf is one board that Anna may put
horizontally inside the shelf. For this purpose the frame
of the shelf already contains pre-drilled holes at heights
1, 2, . . . , y− 1. Anna may attach the board to the frame
at any of these heights. She can also decide not to install
it at all.

Anna owns n books, which all have the same depth. The books’ depth matches that of the shelf
exactly. However, due to differences in the formats and the numbers of pages, her books may
have different widths and heights. Anna does not want to flip her books or stack several of them
on top of each other. Instead, she wants to store all of them in an upright fashion inside her
bookshelf, such that the width and height of each book are aligned with the width and height of
the bookshelf. Help Anna to find the perfect position for the board (or tell her not to use it at all)
so that she can store all her books in her new bookshelf.

For this problem you may assume that the frame and the board of the shelf are infinitely thin.

Input

The input consists of:
• One line with three integers n, x and y, where

– n (1 ≤ n ≤ 104) is the number of books that Anna owns;
– x (1 ≤ x ≤ 104) is the width of the bookshelf frame;
– y (1 ≤ y ≤ 104) is the height of the bookshelf frame.

• n lines, the ith of which contains two integers wi and hi, where
– wi (1 ≤ wi ≤ 104) is the width of the ith book;
– hi (1 ≤ hi ≤ 104) is the height of the ith book.

Output

If there is no possibility to store Anna’s books in the shelf, print out impossible. In case
Anna decides not to install the board, output −1. Otherwise, output the height at which the
board should be installed. If there are multiple possible heights, you may output any one of
them.

Sample Input 1 Sample Output 1

4 4 4
3 1
1 1
1 3
2 2

3

GCPC 2020 – Problem B: Bookshelf Building 3

https://pixabay.com/de/photos/b%C3%BCcherregal-alte-bibliothek-1082309/
https://pixabay.com/de/users/free-photos-242387/

Sample Input 2 Sample Output 2

2 4 3
2 3
1 1

-1

Sample Input 3 Sample Output 3

3 3 3
2 2
2 1
2 1

impossible

GCPC 2020 – Problem B: Bookshelf Building 4

Problem C: Confined Catching
You are playing a board game against an AI on a square grid consisting of n× n cells. You have
two game pieces and the AI has one, and each piece is placed in one of the grid cells. Your goal
is to “catch” the AI’s piece, that is, one (or both) of your pieces has to lie in the same cell as the
AI’s piece after one of your turns. When this happens, you win and the game ends. You lose if
you have not won after 600 turns.

Each turn, you have up to five movement options per piece: You can move a piece up, down,
left, or right to an adjacent cell (if there is one) or let the piece remain in its current cell. The
AI has the same options for its piece in each of its turns. Of course, you can move your pieces
completely independently from one another and even have them occupy the same cell.

Your goal is simple: Win the game! You can safely assume that this is always possible.

Initial Input

Before it is your first turn, your program will receive:
• One line with an integer n (3 ≤ n ≤ 100), giving the size of the grid.
• One line with four integers x1, y1, x2, y2 (1 ≤ x1, y1, x2, y2 ≤ n), giving your pieces’

initial positions.
• One line with two integers x, y (1 ≤ x, y ≤ n), giving the AI’s piece’s initial position.

You can safely assume that your pieces do not lie in the same cell as the AI’s piece (but they
may lie in the same cell as each other).

Interaction Protocol

Your submission will be interacting with a special program called the grader. This means that
the output of your submission is sent to the grader and the output of the grader is sent to the
standard input of your submission. This interaction must follow a specific protocol:

Your submission and the grader alternate writing turns, with you going first. Your turns consist
of a single line with four integers x1, y1, x2, y2 to specify the locations of your pieces after your
turn (in the same order as in the initial input). Similarly, the grader will send lines with two
integers x, y to indicate the AI’s turn. You can safely assume that the grader will only send you
valid moves, and the AI will never choose to place its piece in a cell occupied by one or both of
your pieces. Your submission may take at most 600 turns.

After each of your turns you should flush the standard output to ensure that the request is sent to
the grader. For example, you can use fflush(stdout) in C++, System.out.flush()
in Java and sys.stdout.flush() in Python.

After you send the grader a valid turn catching the AI’s piece, the game ends. Your submission
should then terminate with exit code 0 as usual. For convenience, the grader will send a single
line containing 0 0 to signal the end of the game, which your submission may or may not read.

Your submission will be accepted if it follows the rules and protocol above and wins the game.
If it sends any invalid turn, it will be judged as “Wrong Answer”.

For your convenience, we have provided you with a testing tool that lets your solution interact
with a simple version of the AI opponent. It is included in the ZIP archive with sample data that
you can download from the DOMjudge problem overview page.

GCPC 2020 – Problem C: Confined Catching 5

https://domjudge.cs.fau.de/team/problems

Read Sample Interaction 1 Write

3
1 1 3 1
2 3

1 2 3 2

3 3

1 2 3 3

0 0

GCPC 2020 – Problem C: Confined Catching 6

Problem D: Decorative Dominoes
Marie likes Dominoes. She is too young to fully understand the game, so she just creates
arrangements based on the following simple rule: Each of the two ends of a domino must be
adjacent to an end of another domino with the same number on it.

1

2

3

4

1 2 3 4
x

y

Figure D.1: Visualization of the first sample test case.

Today, Marie found a large box of blank dominoes. This is very exciting for her because now she
can show her full creativity by first creating an unrestricted arrangement and then, in a second
step, painting numbers on both ends of all dominoes so that her simple rule is fulfilled.

She already decided that putting the same number on each end of every domino is not satisfying
enough for her. She only wants to use each number at most twice. However, she does not restrict
herself to numbers between 0 and 6, and she also does not care if two dominoes have the same
pair of numbers on them.

Marie positions the dominoes along an integer grid, so that each domino occupies exactly two
neighbouring grid squares. Note that Marie’s arrangement does not necessarily have to be
connected.

After Marie decided on an arrangement, she notices that choosing suitable numbers is harder
than initially anticipated. Help her to find a valid numbering for her given arrangement or state
that this is impossible.

Input

The input consists of:
• One line with an integer n (2 ≤ n ≤ 5 000), the number of dominoes in Marie’s arrange-

ment.
• n lines, each with four integers x1, y1, x2, y2 (1 ≤ x1, y1, x2, y2 ≤ 10 000), where (x1, y1)

and (x2, y2) are the grid positions of the two ends of one of the dominoes.
It is guaranteed that all dominoes occupy two neighbouring positions in the integer grid and no
two dominoes overlap.

Output

If a valid numbering exists, print n lines, the ith of which contains two numbers, the integers
that Marie should write on the two ends of the ith domino, respectively. Output the numbers in

GCPC 2020 – Problem D: Decorative Dominoes 7

the same order as the dominoes (including their two ends) appear in the input. All numbers in
the output should be integers between 0 and 106 inclusive. In case multiple valid numberings
exist, you may output any one of them. If there does not exist a valid numbering, output
impossible instead.

Sample Input 1 Sample Output 1

4
1 1 1 2
2 2 3 2
2 1 3 1
1 3 2 3

0 3
1 2
0 2
3 1

Sample Input 2 Sample Output 2

4
1 1 2 1
1 2 2 2
4 2 4 3
4 4 3 4

impossible

GCPC 2020 – Problem D: Decorative Dominoes 8

Problem E: Exhausting Errands
Dolly the delivery drone is out for a busy working day. It has to complete n errands in a street
where ` houses are lined up in a row, numbered in ascending order as 1, . . . , `. The distance
between adjacent houses is 1. Each errand consists of picking up a package at some house a and
delivering it to another house b. Dolly can start with any errand, complete the errands in any
order, and is able to carry an unlimited number of packages at the same time. Your job is to find
the minimal total distance Dolly has to cover to complete all errands. The delivery route can
start and finish at arbitrary locations along the street.

Figure E.1: Illustration of Sample Input 1. The shortest route is 2→ 1→ 9→ 4 with
length 14.

Input

The input consists of:
• One line with two integers ` and n (1 ≤ ` ≤ 109, 1 ≤ n ≤ 105), where ` is the number of

houses in the street, and n is the number of errands.
• n lines, each with two integers a and b (1 ≤ a, b ≤ ` with a 6= b) describing an errand

where a package must be picked up at house a and be delivered to house b.

Output

Output a single line with the minimal distance Dolly has to cover from picking up the first
package until delivering the last package.

GCPC 2020 – Problem E: Exhausting Errands 9

Sample Input 1 Sample Output 1

10 6
1 4
3 5
6 7
2 1
9 4
8 5

14

Sample Input 2 Sample Output 2

100 3
11 50
50 49
36 35

42

GCPC 2020 – Problem E: Exhausting Errands 10

Problem F: Flip Flow

Hourglass by nile on Pixabay

For over 600 years, the hourglass has been a well-known
timekeeping instrument. An hourglass consists of two glass
flasks arranged one above the other which are connected by
a narrow channel. Inside the hourglass there is sand which
slowly flows from the upper to the lower flask. Hourglasses
are typically symmetrical so that the sand always takes the
same amount of time to run through, regardless of orientation.
For the purposes of this problem, we also assume that the flow
rate of the sand is a known constant and does not depend on
the amount or distribution of sand in the upper half.

Your friend Helen was bored and has been playing around with her hourglass. At time 0, all the
sand was in the lower half. Helen flipped the hourglass over several times and recorded all the
moments at which she did so. How many seconds does she need to wait from the current time
until all the sand is back in the lower half?

Input

The input consists of:

• One line with three integers t, s and n, where
– t (1 ≤ t ≤ 106) is the current time;
– s (1 ≤ s ≤ 106) is the amount of sand in the hourglass, in grams;
– n (1 ≤ n ≤ 1 000) is the number of times the hourglass was flipped.

• One line with n integers a1, . . . , an (0 < a1 < · · · < an < t), the times at which the
hourglass was flipped.

All times are given in seconds. You may assume that the sand flows from the top to the bottom
at a constant rate of 1 gram per second.

Output

Output the time in seconds needed for the hourglass to run out starting from time t.

Sample Input 1 Sample Output 1

10 7 2
4 9

4

Sample Input 2 Sample Output 2

2000 333 3
1000 1250 1500

0

Sample Input 3 Sample Output 3

100 10 5
15 20 93 96 97

5

GCPC 2020 – Problem F: Flip Flow 11

https://pixabay.com/photos/hourglass-time-hours-clock-620397/
https://pixabay.com/users/nile-598962/

This page is intentionally left (almost) blank.

Problem G: Gravity Grid
Alice and Bob are playing a generalized version of Connect Four. In their game, the board
consists of w columns of height h and the goal is to be the first player to complete a row of
k tiles of equal colour, either vertically, horizontally or diagonally. The two players alternate
dropping their tiles into one of the columns, with Alice using red tiles and going first and Bob
using yellow tiles and going second. Once a tile is dropped, it falls down to the bottommost
available position, making that position no longer available. Once a column has h tiles in it, it
becomes full and the players can no longer drop their tiles there.

Figure G.1: Visualisation of the sample cases, showing the state of the game after 0, 3,
8 and 12 moves, respectively. Alice’s tiles are shown in red, Bob’s tiles in yellow.

As Alice and Bob found it quite challenging to keep track of the winning condition, they just
kept playing until the board was completely filled with tiles. They recorded a log of the moves
they made and asked you to tell them who won the game, and on what turn they did so. If neither
player managed to complete a row, the game ends in a draw, so report that instead.

Input

The input consists of:

• One line with three integers h, w and k (h,w ≥ 1, h · w ≤ 250 000, 1 ≤ k ≤ max(h,w)).
The columns are numbered from 1 to w.

• One line with h · w integers a1, . . . , ah·w (1 ≤ ai ≤ w for each i), where ai is the index of
the column that the ith tile was dropped in. Odd indices correspond to Alice’s moves and
even indices correspond to Bob’s moves. Each column appears exactly h times in this list.

Output

Output the winner of the game (A for Alice or B for Bob), followed by the number of moves
needed to decide the winner. If the game ends in a draw, output D instead.

Sample Input 1 Sample Output 1

4 3 2
1 1 2 3 3 2 2 1 1 2 3 3

A 3

Sample Input 2 Sample Output 2

4 3 3
1 1 2 3 3 2 2 1 1 2 3 3

B 8

GCPC 2020 – Problem G: Gravity Grid 13

Sample Input 3 Sample Output 3

4 3 4
1 1 2 3 3 2 2 1 1 2 3 3

D

GCPC 2020 – Problem G: Gravity Grid 14

Problem H: Hectic Harbour

Gantry cranes by wasi1370 on Pixabay

There are two gantry cranes operating on the same
gantry of length n. The gantry has some fixed integral
positions, labelled from 1 to n, at which the cranes must
perform loading/unloading operations. In the beginning
the first gantry crane is located on the very left of the
gantry at position 1, while the second one is located on
the very right of the gantry at position n. In each time
step a gantry crane can either move to a neighbouring
integral position or stay at its current position (and po-
tentially perform a loading/unloading operation). To
prevent the gantry cranes from hitting each other, the first crane needs to stay strictly to the
left of the second crane at all times. For both cranes you are given a task list consisting of
gantry positions at which the cranes must perform loading/unloading operations. Both cranes
must perform their assigned operations in the given order. What is the minimal amount of
time necessary for both gantry cranes to finish their tasks? It is guaranteed that the first gantry
crane never has to operate at position n of the gantry while the second gantry crane never has to
operate at position 1. For both gantry cranes the first and last loading/unloading operation in the
task list is their initial position.

Input

The input consists of:
• One line with integers n, a and b where

– n (2 ≤ n ≤ 2 000) is the length of the gantry;
– a (2 ≤ a ≤ 50) is the number of operations in the task list of the first gantry crane;
– b (2 ≤ b ≤ 50) is the number of operations in the task list of the second gantry crane.

• One line with a integers k1, . . . , ka (1 ≤ ki ≤ n− 1 for all i), the tasks of the first gantry
crane.

• One line with b integers `1, . . . , `b (2 ≤ `i ≤ n for all i), the tasks of the second gantry
crane.

The first and last task of both gantry cranes are at their initial position, i.e., k1 = ka = 1 and
`1 = `b = n.

Output

Output the minimum number of time steps necessary for both gantry cranes to finish their
assigned tasks.

GCPC 2020 – Problem H: Hectic Harbour 15

https://pixabay.com/de/photos/hafenwirtschaft-containerterminal-3566821/
https://pixabay.com/de/users/wasi1370-8259843/

Sample Explanation

In the first sample test case the gantry is of length 3, the first gantry crane has 2 operations in its
task list while the second gantry crane has 4 operations in its task list. At least 6 time steps are
necessary for both gantry cranes to finish their assigned tasks.

Time Gantry Crane 1 Gantry Crane 2
1 Operate at 1 Operate at 3
2 Operate at 1 Operate at 3
3 Idle at 1 Move from 3 to 2
4 Idle at 1 Operate at 2
5 Idle at 1 Move from 2 to 3
6 Idle at 1 Operate at 3

In the second sample test case the gantry is of length 4 and both gantry cranes have to perform 4
operations. At least 9 time steps are necessary for both gantry cranes to finish their assigned
tasks.

Time Gantry Crane 1 Gantry Crane 2
1 Operate at 1 Operate at 4
2 Move from 1 to 2 Move from 4 to 3
3 Operate at 2 Operate at 3
4 Move from 2 to 3 Move from 3 to 4
5 Operate at 3 Idle at 4
6 Move from 3 to 2 Move from 4 to 3
7 Move from 2 to 1 Operate at 3
8 Operate at 1 Move from 3 to 4
9 Idle at 1 Operate at 4

Sample Input 1 Sample Output 1

3 2 4
1 1
3 3 2 3

6

Sample Input 2 Sample Output 2

4 4 4
1 2 3 1
4 3 3 4

9

GCPC 2020 – Problem H: Hectic Harbour 16

Problem I: Impressive Integers
Recently, Alice and her sister Clara learned about adorable numbers: A positive integer n is
called adorable if there exist some integers a, b, and c so that an equilateral triangle with side
length c can be tiled with n smaller equilateral triangles, each having a side length of either a or
b. For instance, 6 is an adorable number as shown in Figure I.1a below.

A
A

A
A

A

B

(a) Visualization of the second sample output.

(1, 2)

0 1 2
0

1

2

x

y

(b) Coordinate system used for the output.

Figure I.1

They decided to see who can come up with more adorable numbers, but it turns out that checking
all the numbers manually is too cumbersome. Therefore, Alice asked you to help her check
whether the numbers Clara listed are adorable or not. As she wants to be sure that every number
claimed to be adorable really is adorable, she asked you to write a program that, given an integer
n, determines if it is adorable and if so, outputs a valid tiling as shown in Figure I.1a.

Input

The input consists of:
• A single positive integer n (1 ≤ n ≤ 1 000).

Output

If the given integer n is adorable, output a valid tiling using the following format:
• Three integers a, b, c (1 ≤ a, b ≤ c ≤ 109), such that an equilateral triangle with side

length c can be tiled with n equilateral triangles with side lengths a and b.
• n lines, each describing one of the triangles and consisting of:

– one of A and B, specifying if the side length of the triangle is a or b;
– two integers x, y, giving the leftmost corner of the triangle;
– one of U and D, specifying whether the triangle is pointing upwards or downwards.

These triangles must form a valid tiling of the equilateral triangle with corners at (0, 0), (0, c),
and (c, 0), where all coordinates are given using the coordinate system in Figure I.1b.

Otherwise, if n is not adorable, output impossible.

If your tiling consists of triangles that all have the same size, you may either use A or B
exclusively for all of your triangles, or set a = b and arbitrarily label each triangle with A or B.

It can be shown that for every adorable number in the input range it is possible to construct a
tiling according to the above set of rules. You may output any valid tiling.

GCPC 2020 – Problem I: Impressive Integers 17

Sample Input 1 Sample Output 1

2 impossible

Sample Input 2 Sample Output 2

6 1 2 3
B 0 1 U
A 0 0 U
A 0 1 D
A 1 0 U
A 1 1 D
A 2 0 U

GCPC 2020 – Problem I: Impressive Integers 18

Problem J: Jeopardised Journey
Little Red Riding Hood’s1 grandmother’s hut is already quite old. It needs to be torn down and
will be replaced with a new hut. Naturally, she wants the hut to be as safe as possible – nothing
could be worse than Little Red Riding Hood being eaten by the big bad wolf.

Grandmother wants to build her hut in one of the forest’s glades2. Little Red Riding Hood’s
house – well, that of her parents – is also in a glade. Furthermore, the wolf is also always lurking
in one of the glades. If Little Red Riding Hood walks from her home to Grandmother’s hut
and passes by the wolf, she will surely be eaten. The wolf only changes its glade during the
night, so whenever Little Red Riding Hood is walking through the forest, he will be located in
an unknown but fixed glade. He will never be in the glade of Grandmother’s hut nor in the glade
of Little Red Riding Hood’s house.

Little Red Riding Hood always walks from one glade to another. In order to avoid getting eaten
by the wolf, she has to check whether the wolf is in the glade she currently wants to walk to.
Luckily, she has a pair of binoculars. So whenever she is in one of the glades and wants to go to
some other glade, she first uses her binoculars to check whether the wolf is in that other glade. If
he is, she won’t go to that glade. The problem, however, is the following: The forest is not flat.
Throughout the forest there are hills, and if a hill is in-between Little Red Riding Hood’s current
glade and the next glade she wants to go to, she cannot use her binoculars to check whether
the wolf is in that next glade. She will never go from her current glade to another glade if she
cannot check that other glade with her binoculars. This includes both the glade of her own home
and that of Grandmother’s hut (the wolf will never be there, but it is still important for her to
check in order to feel comfortable). Each of the hills is a perfect circle and we assume that the
glades are sufficiently small compared to the hills so that we consider them to be points. Even if
the line-of-sight between two glades is only tangent to a hill, Little Red Riding Hood’s sight is
blocked. No two hills intersect and no glade is within or on the boundary of a hill.

Grandmother considers a glade safe for her to build her new hut there if no matter in which glade
the wolf sits, Little Red Riding Hood can always find a way from her home to Grandmother and
back. Grandmother has asked you to determine which of the glades are safe for her to build her
house in.

Input

The input consists of:
• One line with two integers g and h (2 ≤ g ≤ 2 000, 0 ≤ h ≤ 2 000), the number of glades

and the number of hills. The glades are numbered from 1 to g. Little Red Riding Hood’s
house is always located in the gth glade.

• g lines, where the ith line contains the two integers xi and yi (−107 ≤ xi, yi ≤ 107) giving
the ith glade’s coordinates.

• h lines, each with three integers x, y, and r (−107 ≤ x, y ≤ 107, 0 < r ≤ 107) giving the
centre and radius of one of the hills.

No two glades have the same coordinates, no two hills share a common point, and no glade is
within or on the boundary of a hill.

1In German: Rotkäppchen
2In German: Lichtung

GCPC 2020 – Problem J: Jeopardised Journey 19

Output

Output the indices of all glades where it is safe for Grandmother to build her hut. These indices
must be output in ascending order.

1

2

3

4

Figure J.1: The first sample input.

1

2

3

4

5

6

7

Figure J.2: The second sample input.

Sample Input 1 Sample Output 1

4 3
0 0
0 10
10 0
10 10
5 0 2
10 5 2
2 2 1

2

Sample Input 2 Sample Output 2

7 5
0 0
10 10
10 -10
20 0
30 10
30 -10
40 0
10 4 1
6 -3 3
14 -3 3
20 10 4
30 0 4

4 5 6

GCPC 2020 – Problem J: Jeopardised Journey 20

Problem K: Knightly Knowledge
Ancient cultures had an enormous and mostly unexpected knowledge of the earth and geometry.
When they were building monuments, they did not place them at arbitrary locations. Instead,
each building spot was carefully selected and calculated. Nowadays we can observe this in the
form of so-called ley lines. A ley line is a horizontal or vertical straight line of infinite length
that runs through at least two ancient monuments. Ley lines are expected to be a source of some
kind of magic energy and every church built along such a line is a mighty church.

There are already several monuments and churches. An ancient culture is planning to construct
a new monument, but the location is yet to be determined. They are looking for the spot that
will turn the most ordinary churches into mighty churches. The monument can be co-located
with a church or an existing monument – in that case, the new monument will simply be built
around the church or monument.

-1

-2

-3

-6 -5 -4 -3 -2 -1 0

0

Figure K.1: Illustration of Sample 2 with 2 ley lines (|), 6 monuments (), 2 mighty
churches () and 3 ordinary churches () that are turned into mighty churches
when building the dashed monument.

Input

The input consists of:
• One line with two integers m and c (0 ≤ m, c ≤ 1 000), the number of already built

monuments and churches.
• m lines with the coordinates of the monuments.
• c lines with the coordinates of the churches.

All coordinates are given as two integers x and y (−106 ≤ x, y ≤ 106). None of the given
coordinate pairs coincide with one another, but any may coincide with the location of the new
monument.

Output

Output three integers: the coordinates for where to build the new monument and the number
of ordinary churches that will be turned into mighty churches with this new monument. The
coordinates should be in the range (−106 ≤ x, y ≤ 106). If there are multiple optimal solutions,
you may output any one of them.

GCPC 2020 – Problem K: Knightly Knowledge 21

Sample Input 1 Sample Output 1

2 3
0 5
5 0
0 1
0 3
3 0

0 0
3

Sample Input 2 Sample Output 2

6 5
-6 0
-4 0
-3 0
-4 -2
-3 -2
-2 -3
-6 -1
-4 -1
-3 -1
-5 -3
0 -3

-6 -3
3

Sample Input 3 Sample Output 3

1 2
0 0
1 0
0 1

0 0
2

GCPC 2020 – Problem K: Knightly Knowledge 22

Problem L: Lexicographical Lecturing

Unsorted strings by bethrosengard on Pixabay

The OUG (“Ordered University of Germany") is a
renowned German university. Since it has a lot of stu-
dents, student IDs are quite long strings of equal length
`, where each student ID only contains lowercase letters
of the English alphabet. Unfortunately for the students,
the university’s president hates chaos and expects stu-
dents to always enter lecture halls in ascending lexico-
graphic order of their IDs. As you can imagine, the
process of sorting themselves in front of the lecture hall
takes quite a lot of time for the students. Georgina, a
computer science student, has the following idea to ac-
celerate this process: She plans to fix two integers i, j
with 1 ≤ i ≤ j ≤ ` denoting a substring of the student ID starting at the ith letter and ending in
the jth letter. Students then sort themselves lexicographically with respect to this substring of
their student ID. Of course, i and j must be chosen in a way such that this new ordering is equal
to the lexicographic ordering with respect to their complete IDs. In order to make the process as
fast as possible, the length of the substring should be minimal. Can you help Georgina to solve
this problem?

Input

The input consists of:
• One line with two integers n and `, where

– n (2 ≤ n ≤ 500) is the number of student IDs;
– ` (1 ≤ ` ≤ 2 · 104) is the length of each student ID.

• n lines, the ith of which contains the student ID of the ith student.
All student IDs only contain lowercase letters of the English alphabet, they are pairwise distinct
and appear in ascending lexicographic order.

Output

Output two integers denoting the indices of the first and last letter of the shortest substring
so that when students sort themselves lexicographically with respect to this substring of their
student ID, the same order establishes as if students sorted themselves lexicographically with
respect to their complete student ID.

If there are multiple shortest substrings, you may output any one of them.

Sample Input 1 Sample Output 1

4 6
aaaaaa
aaabbb
aaacaa
aaacac

4 6

GCPC 2020 – Problem L: Lexicographical Lecturing 23

https://pixabay.com/de/photos/scrabblefliesen-w%C3%B6rter-buchstaben-906404/
https://pixabay.com/de/users/bethrosengard-1310636/

Sample Input 2 Sample Output 2

3 5
cccca
ccgda
ccgia

4 4

GCPC 2020 – Problem L: Lexicographical Lecturing 24

Problem M: Mixtape Management
Mary has created a mixtape with her favourite reggae tracks. The mixtape consists of a list of
MP3 files on her computer that she wants to share with her friends Wendy and Larry. However
she knows that her friends have different musical tastes and will therefore also have different
preferences for the order in which the tracks are played.

Mary knows that Wendy is a Windows user and Larry is a Linux user and realised that she can
use this to her advantage. This is because Windows and Linux use different methods to sort
files within a directory in case their names contain numerical data. In Windows, numbers in
file names are read as actual numbers, causing the files to be sorted by increasing values of
these numbers. In Linux, there is no special handling for numbers, so file names are sorted
lexicographically. See Figure M.1 for an example of file sorting on the two operating systems.

Linux Windows
337.mp3 7.mp3
34.mp3 34.mp3
3401.mp3 79.mp3
7.mp3 337.mp3
780.mp3 780.mp3
7803.mp3 3401.mp3
79.mp3 7803.mp3

Figure M.1: Illustration of the first sample case. Note that the file extensions .mp3 do
not influence the ordering and are purely for illustration.

After deciding on the order in which she wants Wendy and Larry to listen to the tracks, Mary has
already sorted the files according to Larry’s taste. Now she wants to rename the files such that
the filenames are distinct positive integers without leading zeroes, they are sorted in increasing
lexicographic order, and when sorting them by value the new order will match Wendy’s taste.
For this purpose, she has come up with a permutation p1, . . . , pn that describes how to rearrange
Larry’s list into Wendy’s list: for every i, the ith number in lexicographic order needs to be the
pith smallest by value. Help Mary find a suitable sequence of filenames.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 100), the number of tracks.
• One line with n distinct integers p1, . . . , pn (1 ≤ pi ≤ n for each i), the given permutation.

Output

Output n distinct integers in lexicographically increasing order, your sequence of filenames. All
numbers must be positive integers less than 101000 and may not contain leading zeroes. Any
valid sequence of filenames will be accepted.

Sample Input 1 Sample Output 1

7
4 2 6 1 5 7 3

337 34 3401 7 780 7803 79

GCPC 2020 – Problem M: Mixtape Management 25

Sample Input 2 Sample Output 2

4
4 1 3 2

234 6 87 9

GCPC 2020 – Problem M: Mixtape Management 26

